Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(3): e2300516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472100

RESUMO

Alternative transcription start sites (TSSs) usage plays a critical role in gene transcription regulation in mammals. However, precisely identifying alternative TSSs remains challenging at the genome-wide level. We report a single-cell genomic technology for alternative TSSs annotation and cell heterogeneity detection. In the method, we utilize Fluidigm C1 system to capture individual cells of interest, SMARTer cDNA synthesis kit to recover full-length cDNAs, then dual priming oligonucleotide system to specifically enrich TSSs for genomic analysis. We apply this method to a genome-wide study of alternative TSSs identification in two different IFN-ß stimulated mouse embryonic fibroblasts (MEFs). The data clearly discriminate two IFN-ß stimulated MEFs. Moreover, our results indicate 81% expressed genes in these two cell types containing multiple TSSs, which is much higher than previous predictions based on Cap-Analysis Gene Expression (CAGE) (58%) or empirical determination (54%) in various cell types. This indicates that alternative TSSs are more pervasive than expected and implies our strategy could position them at an unprecedented sensitivity. It would be helpful for elucidating their biological insights in future.


Assuntos
Fibroblastos , Estudo de Associação Genômica Ampla , Animais , Camundongos , Regiões Promotoras Genéticas , Genoma , Genômica , Mamíferos/genética
2.
Talanta ; 272: 125766, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340392

RESUMO

As one of the major public health problems, cancers seriously threaten the human health. Among them, lung cancer is considered to be one of the most life-threatening malignancies. Therefore, developing early diagnosis technology and timely treatment for lung cancer is urgent. Recent research has witnessed that measuring changes of biomarkers expressed in lung cancer has practical significance. Meanwhile, we note that bioimaging with organic fluorescent probes plays an important role for its high sensitivity, real-time analysis and simplicity of operation. In the past years, kinds of organic fluorescent probes targeting lung cancer related biomarker have been developed. Herein, we summarize the research progress of organic fluorescent probes for the detection of lung cancer related biomarkers in this review, along with their design principle, luminescence mechanism and bioimaging application. Additionally, we put forward some challenges and future prospects from our perspective.


Assuntos
Corantes Fluorescentes , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Biomarcadores Tumorais , Luminescência
3.
J Org Chem ; 89(5): 3509-3524, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38362658

RESUMO

A photocatalytic annulation cascade of unactivated N-alkene-linked indoles with Langlois' reagent by a radical relay is developed at room temperature under blue LED irradiation. The reaction afforded a series of tri/difluoromethylated pyrrolo[1,2-a]indoles in moderate to good yields. The DFT study suggests that the reaction is ascribed to a rhodamine 6G-induced cyclization cascade involving vinyl addition-radical relay and hydrogen-atom-abstraction (HAA) processes, and interestingly, pyrrolo[1,2-a]indoles are applied as fluorescent dyes into the fluorescence spectrum and live-cell imaging. This paper represents an initial example on photocatalytic cyclization cascades by radical relay and the HAA process.

4.
Nucleic Acids Res ; 52(2): e9, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38038259

RESUMO

Proper cell fate determination relies on precise spatial and temporal genome-wide cooperation between regulatory elements (REs) and their targeted genes. However, the lengths of REs defined using different methods vary, which indicates that there is sequence redundancy and that the context of the genome may be unintelligible. We developed a method called MAE-seq (Massive Active Enhancers by Sequencing) to experimentally identify functional REs at a 25-bp scale. In this study, MAE-seq was used to identify 626879, 541617 and 554826 25-bp enhancers in mouse embryonic stem cells (mESCs), C2C12 and HEK 293T, respectively. Using ∼1.6 trillion 25 bp DNA fragments and screening 12 billion cells, we identified 626879 as active enhancers in mESCs as an example. Comparative analysis revealed that most of the histone modification datasets were annotated by MAE-Seq loci. Furthermore, 33.85% (212195) of the identified enhancers were identified as de novo ones with no epigenetic modification. Intriguingly, distinct chromatin states dictate the requirement for dissimilar cofactors in governing novel and known enhancers. Validation results show that these 25-bp sequences could act as a functional unit, which shows identical or similar expression patterns as the previously defined larger elements, Enhanced resolution facilitated the identification of numerous cell-specific enhancers and their accurate annotation as super enhancers. Moreover, we characterized novel elements capable of augmenting gene activity. By integrating with high-resolution Hi-C data, over 55.64% of novel elements may have a distal association with different targeted genes. For example, we found that the Cdh1 gene interacts with one novel and two known REs in mESCs. The biological effects of these interactions were investigated using CRISPR-Cas9, revealing their role in coordinating Cdh1 gene expression and mESC proliferation. Our study presents an experimental approach to refine the REs at 25-bp resolution, advancing the precision of genome annotation and unveiling the underlying genome context. This novel approach not only advances our understanding of gene regulation but also opens avenues for comprehensive exploration of the genomic landscape.


Assuntos
Genoma , Sequências Reguladoras de Ácido Nucleico , Animais , Camundongos , Sequências Reguladoras de Ácido Nucleico/genética , Cromatina , Genômica/métodos , Regulação da Expressão Gênica , Elementos Facilitadores Genéticos
6.
BMC Genomics ; 24(1): 125, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927488

RESUMO

BACKGROUND: Current solid-phase reversible immobilization (SPRI) beads technology is widely used in molecular biology due to its convenience for DNA manipulation. However, the high performance commercial SPRI beads have no price advantage over our method. Furthermore, the use of commercially available SPRI beads standards does not provide the flexibility required for a number of specific nucleic acid handling scenarios. RESULTS: We report an efficient DNA purification strategy by combining home-made beads-suspension buffer with SPRI beads. The method tests the critical concentrations of polyethylene glycol (PEG) 8000 and beads to maximise recovery. And the composition of the SPRI beads DNA purification system (SDPS) was determined at 20% PEG 8000, 2 M NaCl and 16.3 mM MgCl2, and 1.25 mg/ml beads (1/8th original concentration). Then, we tested the DNA recovery of the SDPS, and the result showed that it was comparable to the control (AMPure XP beads). In the study, we have also developed an adjustment SPRI beads DNA purification system (ASDPS), the volume of ASDPS per reaction is 0.6× reaction volume (beads/samples). The performance of ASDPS is similar to SDPS and the control. But the cost of our methods is only about 1/24th of the control. To further assess its performance, we prepare the DNA-seq libraries to evaluate the yield, library quality, capture efficiency and consistency. We have compared all these results with the performance of the control and confirmed its efficiency. CONCLUSION: We have proposed an alternative DNA purification approach with great flexibility, allowing researchers to manipulate DNA in different conditions. And ultimately, its application will benefit molecular biology research in the future.


Assuntos
DNA , Análise Custo-Benefício
7.
Comput Struct Biotechnol J ; 21: 1728-1737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890880

RESUMO

Gene regulatory networks are now at the forefront of precision biology, which can help researchers better understand how genes and regulatory elements interact to control cellular gene expression, offering a more promising molecular mechanism in biological research. Interactions between the genes and regulatory elements involve different promoters, enhancers, transcription factors, silencers, insulators, and long-range regulatory elements, which occur at a ∼10 µm nucleus in a spatiotemporal manner. In this way, three-dimensional chromatin conformation and structural biology are critical for interpreting the biological effects and the gene regulatory networks. In the review, we have briefly summarized the latest processes in three-dimensional chromatin conformation, microscopic imaging, and bioinformatics, and we have presented the outlook and future directions for these three aspects.

9.
J Colloid Interface Sci ; 630(Pt A): 494-501, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36265350

RESUMO

Efficient, stable and low-cost catalysts are essential for improving the efficiency of hydrogen evolution reactions. Herein, the MoO2@Ni2P heterostructure electrocatalyst was synthesized in a self-supported system on a carbon paper (CP) by two-step deposition and phosphorization at low temperature. The self-supported nanoarray structure makes the catalyst to effectively and efficiently transfer electrons and exposes more of its active sites. Moreover, the strong interaction between Ni2P and MoO2 helps to effectively optimize the electronic structure. The density of states calculations demonstrate that there is an increase in the density of electronic states near the MoO2/Ni2P Fermi level. This shows that MoO2/Ni2P has fast charge transfer kinetics. MoO2 modulates the d-band center of nickel, resulting in moderate adsorption/desorption of hydrogen. The above results show that MoO2@Ni2P has good hydrogen evolution activity. The experimental results show that the overpotential (η10) of MoO2@Ni2P/CP in the alkaline environment is only 57 mV with a Tafel slope of 61 mV dec-1. It is similar to the commercial noble-metal catalysts and outperforms most reported catalysts.

10.
Front Bioeng Biotechnol ; 10: 952510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910031

RESUMO

Coronavirus disease 19 (COVID-19) is still a major public health concern in many nations today. COVID-19 transmission is now controlled mostly through early discovery, isolation, and therapy. Because of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the contributing factor to COVID-19, establishing timely, sensitive, accurate, simple, and budget detection technologies for the SARS-CoV-2 is urgent for epidemic prevention. Recently, several electrochemical DNA biosensors have been developed for the rapid monitoring and detection of SARS-CoV-2. This mini-review examines the latest improvements in the detection of SARS-COV-2 utilizing electrochemical DNA biosensors. Meanwhile, this mini-review summarizes the problems faced by the existing assays and puts an outlook on future trends in the development of new assays for SARS-CoV-2, to provide researchers with a borrowing role in the generation of different assays.

11.
J Agric Food Chem ; 70(34): 10466-10475, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35994613

RESUMO

Sitodiplosis mosellana is a major wheat pest that oviposits on spikes, and resistant wheat varieties have been released. However, wheat spike volatiles mediating S. mosellana host selection or resistance are largely unknown. In this study, we found that the highly susceptible wheat varieties Xinong 822, Xinong 88, and Xiaoyan 22 were preferred for S. mosellana oviposition, and their spike volatiles were more attractive to females compared to the resistant varieties Kenong 1006, Shanmai 139, and Jinmai 47. Importantly, we found five odor components evoking obvious concentration-dependent electroantennogram (EAG) and behavioral response. Notably, 3-hexanol, cis-3-hexenylacetate, and hexyl acetate strongly attracted females, whereas ocimene, a dominant component of three resistant varieties, and α-farnesene, absent in Xinong 88, repelled females. Significant attraction was also observed in a synthetic blend mimicking Xinong 822 volatiles. These results suggest that these wheat volatiles are involved in host selection of S. mosellana and provide a basis for development of semichemical-based pest management.


Assuntos
Dípteros , Compostos Orgânicos Voláteis , Animais , Feminino , Oviposição , Triticum
12.
Mol Biol Evol ; 39(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35642310

RESUMO

It is largely unknown how mammalian genomes evolve under rapid speciation and environmental adaptation. An excellent model for understanding fast evolution is provided by the genus Sus, which diverged relatively recently and lacks postzygotic isolation. Here, we present a high-quality reference genome of the Visayan warty pig, which is specialized to a tropical island environment. Comparing the genome sequences and chromatin contact maps of the Visayan warty pig (Sus cebifrons) and domestic pig (Sus scrofa), we characterized the dynamics of chromosomal structure evolution during Sus speciation, revealing the similar chromosome conformation as the potential biological mechanism of frequent postdivergence hybridization among Suidae. We further investigated the different signatures of adaptive selection and domestication in Visayan warty pig and domestic pig with specific emphasize on the evolution of olfactory and gustatory genes, elucidating higher olfactory diversity in Visayan warty pig and positive and relaxed evolution of bitter and fat taste receptors, respectively, in domestic pig. Our comprehensive evolutionary and comparative genome analyses provide insight into the dynamics of genomes and how these change over relative short evolutionary times, as well as how these genomic differences encode for differences in the phenotypes.


Assuntos
Cromossomos , Genoma , Animais , Genômica , Sus scrofa/genética , Suínos/genética
13.
Front Chem ; 10: 905475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601546

RESUMO

As a new type of "zero-dimensional" fluorescent carbon nanomaterials, carbon dots (CDs) have some unique optical and chemical properties, they are being explored for a variety of applications in bio-related fields, such as bioimaging, biosensors, and therapy. This review mainly summarizes the recent progress of CDs in bioimaging. The overview of this review can be roughly divided into two categories: (1) In vitro bioimaging based on CDs in different cells and important organelles. (2) The distribution, imaging and application of CDs in mice and zebrafish. In addition, this review also points out the potential advantages and future development directions of CDs for bioimaging, which may promote the development of CDs in the field of bioimaging.

14.
Insects ; 13(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35447781

RESUMO

Sitodiplosis mosellana, a notorious pest of wheat worldwide, copes with temperature extremes during harsh summers and winters by entering obligatory diapause as larvae. However, the metabolic adaptive mechanism underlying this process is largely unknown. In this study, we performed a comparative metabolomics analysis on S. mosellana larvae at four programmed developmental stages, i.e., pre-diapause, diapause, low temperature quiescence and post-diapause development. In total, we identified 54 differential metabolites based on pairwise comparisons of the four groups. Of these metabolites, 37 decreased in response to diapause, including 4 TCA cycle intermediates (malic acid, citric acid, fumaric acid, α-ketoglutaric acid), 2 saturated fatty acids (palmitic acid, stearic acid) and most amino acids. In contrast, nine metabolites, including trehalose, glycerol, mannitol, proline, alanine, oleic acid and linoleic acid were significantly higher in both the diapause and quiescent stages than the other two stages. In addition to two of them (trehalose, proline), glutamine was also significantly highest in the cold quiescence stage. These elevated metabolites could function as cryoprotectants and/or energy reserves. These findings suggest that the reduced TCA cycle activity and elevated biosynthesis of functional metabolites are most likely responsible for maintaining low metabolic activity and cold tolerance during diapause, which is crucial for the survival and post-diapause development of this pest.

15.
Food Chem ; 373(Pt A): 131415, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34710699

RESUMO

Developing an effective method for the detection of aflatoxin B1 (AFB1) remains an arduous task due to the high toxicity of AFB1 to a health concern. In this study, a sensitive and reliable electrochemical aptasensor based on carbon dots/α-Fe2O3-Fe3O4 nanocomposite (CDs/α-Fe2O3-Fe3O4) is constructed for the determination of AFB1. The CDs have good electrical conductivity and large specific surface areas to improve the aptasensor's sensitivity. The α-Fe2O3-Fe3O4 can not only improve the catalytic performance of the aptasensor but also have magnetism, which can realize the recovery of CDs/α-Fe2O3-Fe3O4 to avoid material waste and environmental pollution. This electrochemical aptasensor can achieve a good linear (0.001-100.0 nM) and excellent detection limit (0.5 pM) for the determination of AFB1. In addition, the aptasensor was also applied to determine AFB1 in beer, rice, and peanuts, all results were in good agreement with HPLC, indicating that the electrochemical aptasensor has a broad application prospect.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanocompostos , Aflatoxina B1/análise , Carbono , Técnicas Eletroquímicas , Ouro , Limite de Detecção
16.
Front Chem ; 9: 769648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869216

RESUMO

Escherichia coli (E. coli) O157:H7 can cause many food safety incidents, which seriously affect human health and economic development. Therefore, the sensitive, accurate, and rapid determination of E. coli O157:H7 is of great significance for preventing the outbreak and spread of foodborne diseases. In this study, a carbon dots-Fe3O4 nanomaterial (CDs-Fe3O4)-based sensitive electrochemical biosensor for E. coli O157:H7 detection was developed. The CDs have good electrical conductivity, and the surface of carbon dots contains abundant carboxyl groups, which can be used to immobilize probe DNA. Meanwhile, the CDs can be used as a reducing agent to prepare CDs-Fe3O4 nanomaterial. The Fe3O4 nanomaterial can improve the performance of the electrochemical biosensor; it also can realize the recovery of CDs-Fe3O4 due to its magnetism. As expected, the electrochemical biosensor has excellent specificity of E. coli O157:H7 among other bacteria. The electrochemical biosensor also exhibited good performance for detecting E. coli O157:H7 with the detection range of 10-108 CFU/ml, and the detection limit of this electrochemical biosensor was 6.88 CFU/ml (3S/N). Furthermore, this electrochemical biosensor was successfully used for monitoring E. coli O157:H7 in milk and water samples, indicating that this electrochemical biosensor has good application prospect. More importantly, this research can provide a new idea for the detection of other bacteria and viruses.

17.
J Insect Physiol ; 135: 104324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744003

RESUMO

Trehalose plays crucial roles in energy metabolism and stress tolerance in various organisms. The orange wheat blossom midge Sitodiplosis mosellana, a serious pest of wheat worldwide, undergoes long obligatory diapause as a larva to survive harsh temperature extremes in summer and winter. To gain an insight into trehalose function and metabolic mechanism in this process, we measured the content of trehalose and glucose, as well as enzymatic activities of trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP) and soluble trehalase (Treh1) at pre-diapause, diapause and post-diapause larvae of S. mosellana. Trehalose levels greatly increased upon entry into diapause, peaked in low-temperature quiescence phase, and significantly dropped after resumption of development, highly consistent with activity changes of trehalose-synthetic enzymes SmTPS and SmTPP. In marked contrast, the activity of trehalose-degrading SmTreh1 exhibited a completely reversed profile. This profile was in agreement with contents of its product i.e. glucose. Furthermore, deduced amino acid sequences of cloned SmTPS, SmTPPB, SmTPPC, SmTreh1-1 and SmTreh1-2 genes contained all conserved functional domains, motifs and active sites. Expression patterns of these genes were closely correlated with their enzyme activities. These results suggested that coordination of trehalose synthetic and degradation pathways is responsible for diapause-related trehalose accumulation, which may serve as an energy reserve for post-diapause development and a cryoprotectant against cold stress in winter.


Assuntos
Chironomidae/enzimologia , Diapausa de Inseto , Trealose/metabolismo , Animais , Chironomidae/genética , Glucose , Larva
18.
BMC Genomics ; 22(1): 857, 2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837950

RESUMO

BACKGROUND: As a powerful tool, RNA-Seq has been widely used in various studies. Usually, unmapped RNA-seq reads have been considered as useless and been trashed or ignored. RESULTS: We develop a strategy to mining the full length sequence by unmapped reads combining with specific reverse transcription primers design and high throughput sequencing. In this study, we salvage 36 unmapped reads from standard RNA-Seq data and randomly select one 149 bp read as a model. Specific reverse transcription primers are designed to amplify its both ends, followed by next generation sequencing. Then we design a statistical model based on power law distribution to estimate its integrality and significance. Further, we validate it by Sanger sequencing. The result shows that the full length is 1556 bp, with insertion mutations in microsatellite structure. CONCLUSION: We believe this method would be a useful strategy to extract the sequences information from the unmapped RNA-seq data. Further, it is an alternative way to get the full length sequence of unknown cDNA.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , DNA Complementar , RNA-Seq , Análise de Sequência de RNA , Sequenciamento do Exoma
19.
Insects ; 12(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572953

RESUMO

Sitodiplosis mosellana, a periodic but devastating wheat pest that escapes temperature extremes in summer and winter by undergoing obligatory diapause. To determine the roles of small heat shock proteins (sHsps) in diapause of S. mosellana, we characterized two sHsp genes, SmHsp17.4 and SmHsp20.3, from this species. Both SmHsps contained the conserved α-crystallin domain and the carboxy-terminal I/VXI/V motif of the sHsp family. SmHsp17.4 had one intron while SmHsp20.3 had none. Quantitative PCR revealed that SmHsp17.4 expression decreased after diapause initiation, but substantially increased during transition to post-diapause quiescence. In contrast, SmHsp20.3 expression was not affected by entry of diapause, but was clearly up-regulated during summer and winter. Short-term more severe heat-stress (≥35 °C) of over-summering larvae or cold-stress (≤-5 °C) of over-wintering larvae could stimulate higher expression of both genes, and SmHsp17.4 was more responsive to cold stress while SmHsp20.3 was more sensitive to heat stress. Notably, transcription of SmHsp17.4, but not SmHsp20.3, in diapausing larvae was inducible by 20-hydroxyecdysone (20E). Recombinant SmHsp17.4 and SmHsp20.3 proteins also displayed significant chaperone functionality. These findings suggest that both SmHsps play key roles in stress tolerance during diapause; and 20E-regulated SmHsp17.4 was also likely involved in diapause termination.

20.
Front Bioeng Biotechnol ; 8: 614906, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33344438

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease, which seriously affects human health but lacks effective treatment methods. Amyloid ß (Aß) aggregates are considered a possible target for AD treatment. Evidence is increasingly showing that curcumin (CUR) can partly protect cells from Aß-mediated neurotoxicity by inhibiting Aß aggregation. However, the efficiency of targeted cellular uptake and bioavailability of CUR is very low due to its poor stability and water-solubility. In order to better improve the cell uptake efficiency and bioavailability of CUR and reduce the cytotoxicity of high-dose CUR, a novel CUR delivery system for AD therapy has been constructed based on the employment of the Fe3O4@carbon dots nanocomposite (Fe3O4@CDs) as the carrier. CUR-Fe3O4@CDs have a strong affinity toward Aß and effectively inhibit extracellular Aß fibrillation. In addition, CUR-Fe3O4@CDs can inhibit the production of reactive oxygen species (ROS) mediated by Aß fibrils and the corresponding neurotoxicity in PC12 cells. More importantly, it can restore nerve damage and maintained neuronal morphology. These results indicate that the application of CUR-Fe3O4@CDs provides a promising platform for the treatment of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...